MOoODEL FOR HEAT AND MOISTURE TRANSFER IN ARBITRARILY
SHAPED TWO-DIMENSIONAL POrROUS MEDIA

M. E. Casada, J. H. Young

ABSTRACT. A model was developed to predict heat and moisture transfer due to natural convection and diffusion in
arbitrarily shaped two-dimensional porous media. Boundary conditions were diurnally varying ambient temperatire on
the outside af walls with moderate Biot number. Other important boundary conditions were developed for typical storage
and transportation sifuations. A two-energy equation model was used to allow for the difference between the fluid and
solid temperatures and its effect on mass transfer in the porous medium. The governing equations were sofved with a
Jinite-difference method in a generalized coordinate system wsing a stream function formulation. It was found that the
energy and moisiure transport equations were best solved using a modified Crank-Nicolson method that was developed to
control the tendency for instability caused by the source terms in these equations. All of the boundary conditions that were
developed worked satisfactorily The two-energy equation medel predicted small differences benveen the fuid and solid
particle temperatures and natural convection only impacted the temperarure solution significantly in the upper comers of

the porous media. Keywords. Grain storage, Numerical modeling, Transportation, Peanuts, Moisture.

he temperature and moisture content of grain and
similar hygroscopic biological products are
generally considered to be the most important
factors in controlling quality during storage
{Ross et al., 1973; Muir, 1973; Smith and Davidson, 1982).
Long-termn {at least several weeks) moisture migration
from matural convection curmrents induced by temperatre
gradients in stored grain is one well-known problem
resulting from adverse temperatures during storage
(Ross et al, 1973; Muir, 1973; Loawer et al.. 1979 Pierce
and Shelton, 1984; Wilcke and Fossen, 19%6;
Halderson et al., 1991; Khankari et al.,, 1993b). Safe
relative humidiry levels required to minimize deterioration
during storage of biological products such as grains, seeds,
and nuts are generally known and adhered to by producers
and processors of these products. However, moisture
migration during storage and transportation of these
products may lead to localized arcas with unsafe moismre
levels causing unacceptable amounts of deterioration, even
though the average moisture level in the lot is considered
safe, Short-term {daily) moisture migration effects are also
a potential problem because of the diurnally varying
ambient conditions during storage and transportation,
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In this article, long-term moisture migration will be
distinguished as that due to the natural convection currents.
Short-term moisture migration is that due to the daily
heating and cooling of the hygroscopic product. The
heating for a few hours each day drives moisture from the
product in the short-term. This moisture may also
accumulate over a long time perind, bot these titles provide
a convenient distinction between these two different
phenomena.

Wooding {1957} and Combarnous and Bories (1975)
gave the governing equations for natural convection in
homogeneous porous media with Darcy flow (peglecting
inertia):
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FLUIm EQUATION OF STATE

p=p,[1- o (- T,)] (5)

The Darcy flow (Darcy, 1856; Bear, 1972) used by those
guthors was based on the assumption that the velocity was
linearly related to the hydraulic gradient and required a
value of less than one for the particle Reynolds number,
Rey. Equations 3 and 4 together enforce conservation of
thermal energy when a temperature difference between the
solid and fluid is included in the model. Combarnous and
Borics (1975) pointed out that it might be difficult to
determine some of the parameters in these eguations: the
equivalent thermal conductivity tensors, k; and k; , and the
heat transfer coefficient, h,. Some results reported in the
literature can be used to find h, (Wakao and Kaguei, 1982),
but ky and k, still present a problem. Combammous and
Bories (1975) studied the effect of h and constant values k;
and k, on the numerical predictions of heat transfer in a
rectangular enclosure using the stream function
formulation. They found generally good agreement with
experimental results (Combarnous and Bories, 1974) when
they varied the values of ky and k; and hy, to fit their data.
There have been several numerical studies on natural
convection heat transfer in porous media for recirculating
flows in enclosures. The majority of these stwdies were
based on the assumption of Darcy flow. Prasad and Kulacki
{1984a, b) presented a stream function formulation from
Wooding's (1957) equations for the namral convection
problem in a rectangular porous medium assuming Darcy
flow. This method has been used to solve a variety of
problems in rectangular enclosures with different boundary
conditions (Prasad, 1987; Prasad and Kulacki, 1986, 1987;
El-Khatib and Prasad, 1987). The stream function
formulation was used again by Stewart and Dona (1988) to
predict the ransient natural convection currents in grain
storage bins. They used the modified Ergun equation from
Patterson et al. (1971) to model the flow and they also
found that the inertia term was only significant for particle
Reynolds numbers greater than one. Vafai and Tein (1981)
analytically developed a set of equations similar lo those
developed by Wooding (1957) using the local volume
averaging technique. Unfortunately, that work did not
overcome any difficultics in using such eguation sets for
solving heat transfer problems in porous media. The work
mentioned above gives helpful guidelines for numerical
solutions of heat transfer in porous media, but none of the
rescarchers addressed the moisture transfer problem.
During the last 20 years, a number of models have been
developed for heat transfer in stored grain in cylindrical
bins, neglecting the interaction with moisture transfer (e.g.,
Jayas et al, 1992; who also listed most of the earlier
works). Recently, a few models have been developed that
include moisture ransfer for stored grain in cylindrical bins
{Tanka and Yoshida, 1984; Nguyen, 1986; Khankari et al.,
1990; Obaldo et al., 1991; Abbouda et al,, 1992; Khankari
et al., 1993a, b). Singh et al. (1993) presented a three-
dimensional finite difference model for stored grain in a
rectangular enclosure. This model included estimates of
dry matter loss and pesticide concentration, but used only
simplified boundary conditions. None of these models were
applicable to the imegular two-dimensional shape of

railcars. Nor did these models address all of the boundary
interactions that need to be studied in the railear (ep., air
and moisture exchange with the headspace and the
resulting solar heating interaction, variable resistance to
heat transfer at the boundary due to variable air velocity
and container walls, and temperature difference between
the prain and air),

In order to use a given finite-difference solution with
amy possible arbitrary geometry to be specified, a body-
fitted coordinate system is needed. The differential
equation method is one of the most highly developed
methods of generating body fined coordinate systems
(Anderson et al, 1984). Thiz method transforms the
arbitranly shaped physical plane to a rectangular grid in the
computational plane using differential equations (o control
the mapping. Thompson et al. (1974, 1977) gave a
thorough presentation of using Poisson equations for each
coordinate to perform these mappings. This method
allowed for more control over the mesh spacing by the
proper specifications of the source terms in the Poisson
equations. Thompson (1978) provided information on
using exponential functions for these source terms. The
specification of boundary conditons for a few heart ransfer
and fluid flow cases in the computational plane was
developed by Thames et al. (1975). They presented a
method of enforcing a no-slip boundary condition on the
vorticily transport equation that they found to work better
than the methods of Israeli (1970) and Roache (1972).
Peyret and Taylor (1983) presented the use of the finite-
volume method for specifying the more complicated
energy and moisture transfer boundary conditlons.
Thompson et al. (1977) and Thompson (1978) gave
derivatives and vectors in the transformed plane that are
needed for the finite-volume method. A few other needed
relationships are given in Appendix A.

The need to determine the causes of moisture migration
in shelled peanuts during ransportation in railcars requires
a model to predict moisture migration in the iregular
shaped railcars, This is the first of two articles describing
the development and application of such & model, This
article describes the development of a numerical model
with relevant boundary conditions for heat and moisture
transfer in an arbitrarily shaped porous media, such as the
peanut bed. The second article (Casada and Young, 1994)
describes the application of this model to the transportation
of peanuts and compares the model's predictions to
experimental data.

The objective of this study was to develop a model for
use on a personal computer for heat and moisture transfer
in arbitrarily shaped rwo-dimensional porous ‘media with
the necded attributes included for studying both long-term
and short-term moisture migration during transporiation of
peanuts. The major model attributes needed to study both
types of moisture migration were: (1) accounting for the
difference between the particle (peanut) and the fluid (air)
temperamire within the porous medium, (2) diurnally
varying ambient temperature with variable finite resistance
to heat transfer on the container surfaces, (3) air cxchange
allowed through the top surface of the porous medium, and
(4) accounting for moisture movement duc to temperature
gradients, moisture gradients, and natural convection air
currents.
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GOVERNING EQUATIONS

Equation 2, conservation of momentum, was modified
using Ergun’s equation (Ergun, 1952) to include the effects
of inertia equations 1 through 5 incorporate the
assumptions of a homogeneous, isotropic porous medium
and a fluid whose density varies linearly with emperature.
Further assumptions are (Combarnous and Bories, 1975):
(1) the changes in air density are much smaller than the
densities themselyes, so that the density variation is kept
only in the buoyancy term, pg, and (2) the thermal
propertics are constant,

A dimensionless stream function was defined by:

u =g mfia‘ﬁ (6a)
dy
and
v-—g-a,¥ (6b)
dx

The inertia terms were needed in the flow equations to
properly describe flow reversals resulting from cveling
boundary conditions.

Using Ergun’s equation (Ergun, 1952),

AP = FV+ F,(VV) ] (M)

adding a latent heat term in the solid energy equation, and
adding an equation for transport of moisture in the pore
spaces, the dimensionless goveming equations in twao
dimensions become [see Prasad and Kulacki (1984a, b) for
the basic stream function formulation of the continuity and
momenum equations, and Casada (1990) for the modified
formulation using equation 7, which includes the inertin
term]:
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The thin-layer drying equation for hygroscopic particles
such as grains and nuts, based on the exponential drying
equation (Sherwood, 1936) is:

ﬂnal_gn_'_qi&:,!m ELT_GI:J,"E —I"}.fif

oo M (12)

This thin-layer mode] was used for convenience since the
very low air to solid ratio results in the model not being
sensitive to which thin-layer model was used,

The convective mass transfer coefficient, hy,, was
caleulated from the convective heat ransfer coefficient for
flow over a sphere using the Lewis analogy (Kays and
Crawford, 1980) based on the actual interstitial air
velocities. The equilibrium moisture content of the peanuts
was calculated from the modified Henderson equation
(ASAE, 1991). The values of k; and k. were estimated
from the bulk thermal conductivity of peanuts based on the
information in Combarnous and Bories (1974) and
Masamune and Smith (1963). No explicit method of
determining ki and k is currently available. Peanut
properties used were: ky = 0,024 WimK, k= 0.085 W/mk,
Py = 652 kg/m?, ¢, = 2135 Jkg K, and K = 3.4 x 10-¥m2.
Air properties were taken from standard tables
(Touloukian et al., 1970a, b, c).

In a generalized coordinate system where,

E=E(xy) (13a)
N =1 (x.y)and (13b)
Tmt (13c)

Equations 8, 9, 10, and 11 become (using the chain rule of
calculus);
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Equation 12 remains unchanged in the generalized
coordinate system, Equations 14 through 17 may be solved
in a computational plane, with a square mesh for simplified
application of finite differences, while the results apply to
the physical (real) plane because the geometry differences
are accounted for by the metrics (xg, %, . . .) in these
cquations. The metrics may be calculated numerically after
determining the X,y coordinates of the interior nodes from a
numerical solution of the following equations
{Thompson et al., 1977), which constitate the differential
equation method of generating the computational grid:

E t+E,=P (&) (18)

N+ Nyy=Q (€ M) (19)

with the boundary conditions being the xy coordinates of
the boundary nodes in the physical plane, The source
terms, P and Q, were specified to concentrate nodes near
the boundaries where the gradients were larger, as
discussed in Thompson et al. (1977).

BoUNDARY CONDITIONS

The following standard boundary conditions required
for implementation of the finite-difference model were
applied to the govemning equations, equations 14 through
17, for use with the standard test simulation. These
particular boundary conditions were chosen both because
of their general applicability to storage and shipping
containers and because they fit the primary intended
application to shelled peanuts in railcars. Other useful
alternative boundary conditions may be substituted as
necessary with minimum impact on the rest of the model,
as noted below. All boundary conditions discussed below
were developed for the model. Those referred to as
“standard” were used with the standard test simulation.
Those relerred to as “alternative” are available for applying
the model to other situations. The boundary conditions are
summarized in table 1 and the boundary domains are
illustrated in figure 1.

StrEAM Funcrion EQUATION

The standard boundary conditions on the stream
function, equation 14, were constant stream function (y =
zero) on all boundaries, including the line of symmetry. An
important alternative boundary condition for the top
boundary, which allows flow across the boundary was the
condition,

Table 1. Boundary comnditiens used [ the standard test slmulation
and alternative boundary conditions

Eg Slandard Boundary Alermative Beurdary

{No) Condition Conditlons
Biream function J4 = o m Do all = yeloaB ByandBy
boundaries = Eg.il0enB,
Fluid energy 15 = Condeetion throwgh = T = constznr o all
wall with moderate i boundaries
on by B, B, + Moderae Bloa B,y
Symmelry cn By = Wall conduction on B,
Solid energy 16 = Conduoction through v T = comstai om all
wall with moderste Bi boandores
on B, B4, By » Madersae Bl on By
Symmetry on By = Wall conduciing on B,
Moisture transport 17 = Imy cable wall « [mpermeable wall
o By By, mnd B am all boundaries

Symmetry on By = Moderae Bi, coBy

9 o (20)
dn dg
which enforces both:
d
ﬁ = () (21}
ok
av“ 0 (22)
dn

This condition requires that the velocity is not changing at
the free surface. Tt is necessary for the common sitation of
a headspace above the porous medium. With constant
stream function specified on the other three boundaries,
this gives the four conditions that are required
mathematically and satisfles the physical condition of no
flow through the walls or across the line of symmetry. The

tm)

Height

Width (m)
Figore 1-Finite difference mesh generated for mode] testing.
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specification of a constant (y = () at the boundary was
unchanged in the transformed plane. Equation 20 is written
explicitly in the transformed plane so no mapping is
required.

ExErGY EQuaTions

For the energy equations, equations 15 and 16,
conduction through the wall with a convective heat transfer
coefficient on the outside of the wall, yielding a moderate
Biot number, is specified on the bottom, top, and left side
boundaries, and symmetry on the right side boundary as
standard boundary conditions. The case of moderate Biot
number (0.1 < Bi < 50) was of interest because the
resistance of the container walls combined with the
resistance due to convection at the walls may result in Biot
numbers in this range. The common condition of large Biot
number (Bi = 50) is implicitly handled in the mode] as a
special case. These standard boundary conditions were
developed using a finite-volume method where each node
is associated with its discreet volume and flows across all
boundaries are cquated to storage as shown in Appendix B,
A sinusoidal varying ambient temperature was specified
outside the walls.

The varying air velocities and temperature gradients
vielded Biot numbers between 10 and 60 in the standard
test simulation. The top and bottom boundary conditions
may differ depending on the specific model applications.
For example, when the flow boundary condition allowed
fluid flow through the top boundary, convective heat
transfer was used as an alternative boundary condition on
the top surface. Some applications may also not allow the
use of a symmetry condition, requiring a wall condition on
that side boundary also. Another alternative energy
boundary condition is the basic condition of a single initial
step change in the temperature on all boundaries. This step
change boundary condition was also investigated in
preliminary studies,

MOISTURE TRANSPORT EQUATION

For moisture wransport, equation 17, no diffusion was
specified through the bottom, top, and left side walls, and
across the nght hand line of symmety. These standard
boundary conditions were also developed using the finite-
volume method. The top boundary condition and symmetry
condition on this equation may also be expected to vary,
depending on the application. As with the energy
equations, when the flow boundary condition allowed fluid
flow through the top boundary, convective mass transfer
was used as the boundary condition on the top surface. The
finite-volume development of these boundary conditions
was similar to the example in Appendix B,

INITIAL CONDITIONS

The w-'lnﬂ"l'illl";‘ el condition was the initial tlemperaliame
of the solid particles. This was generally chosen w be a

relatively low temperature typical of pmdu;ts from
refrigerated storage, since this gave large gradients and
constituted the most difficult case for the model. Intm:smml
air was initially set in temperature and mowsture
equilibum with the solid padicles. Air velocities in the
pore spaces were initialized as zero; however, the initial
velocities had little effect on the simulations.

VoL, 37(6): 1927- 1938

Since time was not changed in the transformation
{eq. 15¢), no mapping of the initial condition was required.
All boundary conditions for the energy and moisture
transport equations were either constants or were explicitly
developed in the transformed plane so that no further
mapping was required.

FINITE DIFFERENCE SOLUTION

Equations 14, 15, 16, and 17 were discretized with
sccond order accurate central differcnces. Throughout the
development, solution techniques and coding methods
were selected to minimize computation time, without
compromising accuracy, o the model would run efficiently
on a personal computer. The solution technique for the
majority of simulations was;

I. Solve the two energy equations simultaneously for
the peanut and air temperatures at each node for the
next time step using the modified Crank-Nicolson
scheme (Crank and Nicolson, 1947), deseribed
below, with successive over-relaxation (SOR)
{Anderson et al., 1984).

2. Solve the flow equation, equation 14, for the stream
function at each interior node for the current time
step using point Gauss-Seidel iteration
{Anderson et al., 1984) with SOR.

3. Calculate the velocity components from the stream
function using finite difference approximations to the
derivatives in the definition of stream function.

4. Solve the moisture transport equation for the
humidity ratio at each node for the current time step
using modified Crank-Nicolson with SOR, and
simultaneously calculate the peanut moisture content
at each node using equation 12,

3. Update the boundary conditions.

6. Return to step | if desired total time has not been
reached.

When a boundary condition of step change in temperature
was used with the single energy equation model, both the
energy and moisture transport equations were solved
explicitly. In that case, steps 1 and 4 were different in that
temperature and humidity ratio, respectively, were
calculated at each node using the simple explicit method
{Anderson et al., 1984). The explicit methods required
prohibitively small time steps (for stability) when varying
ambient temperature boundary conditions were used,

The fimite difference solution technique given above
was coded for use in conjunction with a mesh generation
program based on the method of Thompson et al. (1977,
The mesh generation program will generate a mesh to fit
any two-dimensional body when the physical (real) x,y
coordinates of the boundary nodes are specified. This
program solves equations 18 and 19 for the coordinates of

e wwansfonmnod plans vsing point Caoess-Seladel  Stermtion
with SOR, A 17 = 17 nods mesh pencoatod Tor o

geometry of a raflear is shown in figure 1. This mesh was
used for the standard test simulation, The mesh was
slightly modified by leaving an open headspace at the top

when testing the altemnative free surface boundary
condition, equation 20. Mesh sizes ranging from ¢ x &
nodes to 33 x 33 nodes were tested for the symmetric

railcar geometry to test the effect of mesh size on accuracy.
The railcar was assumed to have shelled peanurs as the
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porous medium. Properties for the peunuts were taken from
Steele (1974) and Suter et al. (1975). The values of by were
taken as that for airflow over spheres using the air
velocities in the pore space calculated by the model. The
finite difference model was then used to predict the local
temperatures, bulk air velocities, air moisture content, and
peanut moisture content, as a function of tme for the
specified boundary conditions within the body described
by the geometry of the meshes.

The computer model was also used to simulate
conditions in a hypothetical railcar that was subject to
relatively severe conditions, this will be referred to as the
standard test simulation. This hypothetical railcar was
loaded with shelled peanuts from refrigerated storage, at
4° C, and then subjected to a daily average maximum
ambient temperature of 38° C and minimum of 21° C for
the entire shipment time. Different conditions typical of
storage and transportation situations were simulated, but
the severe conditions of the standard test simulation was
the most difficult case found for the model because of the
large and varying gradients that resulted,

There are basically two temperature boundary
conditions possible for these storage and transportation
problems. A simple step change could be employed by
using the average daily temperamre. A more realistic
boundary condition is to use the actual diurnally varying
ambient temperature. This results in relatively large
gradients to be imposed on the temperature field every day
as the temperature cycles between the daily maximum and
minimum. The constant imposing of large gradients is
more difficult for numerical models than the step change
condition. Thus, the most severe possible case is when the
daily temperature variation is a maximum. This is the
severe case chosen as the standard test simulation,

RESULTS AND DISCUSSION

The alternative free surface boundary condition (eq. 20}
worked well with the stream function solution. Figure 2
shows the predicted streamlines for the standard test in the
rail car peanut bed after 24 h (at 12:00 noon), which was
approximately the time of maximum velocities in the bed.
An important measure of the effectiveness of the
glternative flow boundary condition was its ability to
enforce the conservation of mass at the top surface.
Physically, all of the mass flow (of air) out through this
boundary must reenter through another part of the
boundary because the headspace is closed except for this
boundary, No practical boundary condition was found that
could explicitly enforce this conservation. The mass flows
in and out of the headspace through the top surface of the
peanuts are compared in figure 3 for the standard test
simulation modified with this alternative condition,
equation 20. After the first few hours the flow difference
settled into a diumal cycle that generally stayed within
10% of exact conservation of mass at the extremes of ermor.

Typical of porous media with stored agricultural
products like grains and nuts, the one tested (shelled
peanuts) offered a sufficiently high resistance to flow so
that the air velocities from natural convection were quite
low, as can be seen in the velocity profile in figure 4. This
velocity profile is the y-component of velocity at the
vertical midpoint. The maximum velocity achieved was

14932
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Fipure 2-Streamlines in the porous medium afier 24 h for an
glternative test,

0,05 cm/'s. The low velocitics generally had lintle effect on
the temperature solution, with one exception near the wall
at the top surface of the bed. This was the point of
maximum velocitics and there was as much as 4° C
difference berween the model’s prediction with and without
convection included. The airflow lowered temperatures at
this location during the day as relatively cool air from
within the bed flowed up to the top surface.

The model was used to solve the governing equations
with the mesh generated for the railcar geometry. A
moadified Crank-Nicolson solution technique was
developed for equations 15, 16, and 17 to avoid instability
problems stemming from the source terms, especially in
equarions 16 and 17, the fluid energy equation and the
moisture transport equation. An explicit solution was
attempted, as well as an alternating direction implicit
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Figure d4-Velocity profile at the vertical midpoint,

{ADI} method, but neither of these worked as well with the
diumally varying temperature boundary condition. When a
step change in temperaure was used as a boundary
condition, a simple explicit solution worked well. The
standard method (Crank-MNicolson, 1947) is essentially an
arithmetic average of the fully explicit and fully implicit
methods, Fifty percent of each term is carried at the current
time step and fifty percent is lageed at the previous time
step. While this method is unconditionally stable for many
cases, it was not unconditionally stable when used with
equations 15, 16, and 17 because of the source ternms in
those equations. In equations 16 and 17 the source terms
often dominated the equations when there was rapid heat
and moisture transfer, respectively, This rapid heat and
moisture transfer occurred twice a day when the divmally
varying temperature boundary condition was used. With
the modified Crank-Nicolson solution the entire source
term, e.g., Stg(8; — B.) in the fluid energy equation, was
carried at the current time step, instead of lagging half at
the previous ime step, thus placing all of that large term on
the main diagonal of the solution matrix and insuring
diagonal dominance of the matrix. The modified Crank-
Micolson method was stable with a time step twice as large
as could be used with the standard Crank-Nicolson method.

Because of the convective terms and the source terms in
the equations, the Crank-Nicolson method was not
unconditionally stable, but the maodified technique worked
well and was stable with the energy equations for time
steps of 60 min and a maximum modified Rayleigh number
of 185, The solution of the moisture transport equation was
stable for time steps up to 15 to 30 min. A 15-min time step
guve stable solutions for all of the conditions that were
tested, and this was the time step used with all model
equations [or caleulations in the standard test simulation.
Other time steps wene only used to test the accuracy and
stability of the model. Time steps less than |5 min did not

Voo 37060 1927-1938

affect the solutions, which shows that the 13-min time step
gave sufficient accuracy. The 30-min time step generally
gave stable solutions for less severe conditions, but
occasionally produced instability at the top boundary
during times of rapid moisture transfer. In these cases,
reducing the time step to 15 min solved the instability
problems. Both the energy and moisture equations had
greater stability problems at the initial time steps because
of the large step change in the boundary conditions initially
combined with the ever present source terms, 50 smaller
time steps were used for the first 1 to 3 h of simulation,
starting at 1% of the base time step size and increasing in
two-step chanpes to the base time step after the first 1 to
3 h of simulation.

An SOR parameter of 1.4 was effective in speeding up
the convergence of the energy equation, except at the
boundary nodes that were being calculated as part of the
solution after using the control volume formulation. At
these boundary nodes an under-relaxation parameter was
used to insure stability. A value of (.8 was sufficient with
the one-half hour time steps, and a value of 1.0 worked for
time steps of 0.1 h, and less. For the moisture transport
equation, an SOR parameter of 1.2 worked best for the
interior nodes with a value of 1.0 at the side boundary
nodes. An under-relaxation parameter of 0.9 was required
to insure slability at the top boundary nodes. After testing
grids up to 33 x 33, we found no significant effect from
grid refinements greater than 17 x 17,

A major difficulty during the model development was
maintaining conservation of meisture in the porous
medium. Figure 5 shows the change in total moisture in the
porous medium predicted by the model for the standard test
and indicates that a good overall moisture balance was
obtained with the model. The most important factor that
allowed the good moisture balances was insuring that the
metrics from the mesh generation program were calculated
with the same order finite difference equations as were the
terms in the moismre transport equation. The finite-volume
boundary conditions inherently gave first-order accurate
differences; when a mesh generated with second-order
accurate differences at the walls was used with these
boundary conditions moisture was not conserved, which
resulted in excessive drying of the particles at the
boundaries.

A number of other possible causes of moisture loss were'
investigated but did not impact the moisture balance
significantly. Some of the important possibilities are

1
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Figure 5-Predicted total moisture balance during the standard test.
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discussed here, The solution of the moisture transport
equation combined with the thin-layer drying equation for
the particles may cause difficulty with maintaining a proper
moisture balance between the air and the particles.
Depending on the order of estimation, the successive
estimation of air humidity ratio, particle moisture content,
and equilibrium surface condition of the particle resulted in
either an explicit moisture balance error or uwse of
physically unrealistic driving gradients. This problem was
circumvented by simultaneous estimation of the three
variables using an iterative procedure. The simultancous
solution procedure caused the model to run slightly slower,
but made linde improvement in the moisure balance. It was
expected that using boundary conditions developed by the
finite volume method along with equation 17, developed by
ransformation, could prevent conservation of moisture
because the two methods of development did not result in
identical equations. However, simulation results showed
little difference between the equations and the moisture
balance problems persisted. Computer round-off and
accuracy issues were also investigated and found not to be
a problem. Hence the moisture balance problem was
primarily atributed to improper differencing of the metrics.

The encrgy model (two energy equations, eqs. 15 and
16) was compared to an analytical solution of heat ansfer
in a semi-infinite solid with a sinusoidally varying surface
temperature described by:

8 (0.t) = A sin (et —e) +8_ (23)

For short times, the nodes near the surface of the porous
medium may be considered as in a semi-infinite medium.
Carslaw and Jaeger (1959) gave the analytical solution of

this semi-infinite medium problem as:

O(x,t) =

- ecldp  (24)

sin|m

x2
4“1“2) - 54 +8,,

2 J
ﬁ *
Wiy

For these tests the model was modified (by eliminating
moisture transfer, airflow, and the thermal mesistance of the
container wall} to match this analytical solution. The
standard time step of 15 min was used in the simulation.

Figure 6 shows that the model results compare well with
the corresponding analytical solution. The worst case was
the node nearest to the surface (0,029 m from the surface),
which resulted in a 0.35% C standard error of difference for
the first 96 h of simulation. This demonstrated that the two
energy cquation models for heat transfer, equations 15 and
16, effectively described the overall heat transfer in the
porous medium.

The two-energy cquation model indicated differences
between the solid and fluid temperatures in the porous
medium. The differences were largest near the side
boundaries, during the high midday heating periods, and at
the top surface when high temperatures due to solar heating
were gssumed. The temperature difference at the top of the
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porous medium was as large as 0.5° C at midday during the
standard test. These remperamre differences contribute to
driving more moisture from the solid particles during the
day, which gave a greater potential for moisture
condensation at night. Future research is needed to confirm

this temperature difference.

CONCLUSIONS

A finite difference model was developed to simulate
heat and moisture transfer in arbitrarily shaped porous
media due to diffusion and convection. The model required
0.4 h of CPU time per day of simulation on a 386-33 MHz
personal computer. The following conclusions were
formulated from the resulis of this smdy:

* The instabilities from the source terms combined
with diumally varying boundary conditions with the
energy and moisture transport equations were
controlled by using a modified Crank-Nicolson
method with the source term at the current time step,
under-relaxing at the boundaries, and using small
initial time step sizes.

* The two-cnergy equation model effectively described
the overall heat transfer in the porous medium.

= The two-energy equation model predicts temperature
differences as large as 0.5° C between the air and
solid particles particularly near the boundarics with
diurnally varying temperatures using the current
estimates of thermal properties,

« The natural convection currents contribute
significantly to the temperature solution at the upper
corners of the porous medium.

s The free surface boundary condition, equation 20,
gave a stable solution of the stream function equation
and physically reasonable airflows through the
boundary into the headspace.

= The finite difference model developed will predict
the moisture migration due to short-term and long-
term effects during storage and shipment of
hygroscopic matcrials in containers that may be
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described by arbitrarily shaped two-dimensional
geometries.
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NOMENCLATURE
¢ = specific heat (J/kg)
g = acceleration due to gravity (m/'s?)

h = node spacing (m)

h*;, = latent heat of vaporization of water from solid
particles (J/kg)

hy, = convective mass transfer coefficient (m/s)

h, =convective heat transfer coefficient at peanut

kernel surface (W/m2K)
- convective heat transfer coefficient on inside of
container wall (W/m2?K)

hy o = convective heat transfer coefficient on outside of
container wall (W/m2K)

k. =effective thermal conductivity of porous medium
{(W/mK)

k; =equivalent thermal conductivity tensor in the

_ {luid path (W/mK)

k, =equivalent thermal conductivity tensor in the
solid matrix (W/mK)

g = heat flux (W/m?)

t =time (s)

t

u

hw.l

= = {trivial) transformation of time (s)
= x-component of velocity (m/s)

v = y-component of velocity (m/s)
Xy = coordinates
Ay = surface area per unit volume of solid, I'm;
[ = (6/ Dp) (1 — ¢) for spheres]
=D* . p B (m¥s); (= Fick’s Law mass diffusion
coefficient for porous media)
D’ =modified mass diffusion coefficient for porous
media (m2/s)
DP = cguivalent particle diameter (m)
F, =Ergun's first coefficient, Pas/m? (kg/m?s)
F, =Ergun’s second cocfficient, Pas3m? (kgfm‘"}
F* =F¢g(y K /p)(s/m)
K = permeability of porous medium (m?)
L = characteristic length, y-direction (m})
M = dry basis moisture content (decimal)
M, = initial particle moisture content (decimal)
=rate of evaporation or condensation per umit
volume (kg/s-m?)
P = pressure (Pa)
T = temperature (K)
T, = reference temperature for equation of state (K)
= Darcian velocity vector (m/s)
W, =apparent (bulk or Dharcian) velocity (s}
V., =V/¢= pore velocity (nv's)
ﬁ =vg= velocity normal to lines of constant £ (m/s)
= vq = velocity normal to lines of constant 1) (m/s)

D,

SUBSCRIPTS
a = air £ = luid: o = initial time; 5 = s0lid; 1 = total;
w = wall

SUPERSCRIPTS
n = lasttime step; 0 + | =new time sep

GREEK SYMBOLS
a, = coefflcient of thermal expansion of air (I/K)
Ly
éf‘ =fluid and solid phase thermal diffusitvity,
respectively (m2/s)
By, = slope of equilibrium moisture content isotherm
for solid particles (m¥/kg)
¥ = humidity ratio (K20 Bary air)
g, = boundary temperature phase constant=14h
L = dynamic viscosity (Pas)
v = kinematic viscosity (m%/s)
p =density (kg/m?)
p, =rcference density of air in equation of statc
(kg/m?)
p. = dry matter density of solid particulates (kg/m¥)
¢ =void fraction of porous medium = porosity
{decimal)
w = boundary temperature pscillation frequency (Hz)

DIMENSIONLESS VARIABLES

¥ =xL
y =yL
F  =Fy K/(p¢)=Forchheimer coefficient

F, =1+2uF*

F, =1+2vF*
Hyg = M)/ [ Ce(Tu=Ty ]
J =Xg¥y - Ve Xy = inverse of Jacobean of the

transformarion
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H, =2L2hg;/ (0ke) = dimensionless wall convective
heat transfer coefficient

Le; = Dp/o¢= fluid phase Lewis number

Ra* = (ppa KLAT)/ (pa,) = Rayleigh number

Rep, = DpVpgfy = particle Reynolds number
[6hyyL

Stm A1 — ¢ / [Dpee ] = meodified moisture
= Stanton number
Sty = [6h, L1 — 4] ! [Dpk ] = modified fluid Stanton
number
S, = [lSh],L?}ar [Dy(pc)gag] = modified solid Stanton
number
= dimensionless velocity

v ==Ji-\'

o - i% ?13' I:!J'ansfurmaﬁ:m metric)
B = 'fg X+ ¥ (transformation metric)
T =X+ ?2 %trans[‘urmatmn metric)
5 = ulFex Xy - Xt Vo) = 2807y Xe = Yo V) +
¥ l:i.;m ¥e- ¥ %j [tr.m:.mnnalmn mcr.m:]
e =X ¥g — Vg Xqy) - 2P0y ¥y — X V) -
¥ En = Xy y“} {lransrm-mauan metric)

8 (T Tu}f (T - Ty)
fig, = daily mean temperature
1 = generalized coordinate

= generalized coordinate

T =(ta,)/D? = dimensionless time
Yy =stream function
L =y,
Q =MM,
APPENDIX A

RELATIONSHIPS IN THE TRANSFORMED PLANE
The following notation is used in this appendix:
fix,y)=a twice continuously differentiable scalar
function of x, y, and t
I ~ unit vector tangent to a line of constant §
y = ynit vector tangent to a line of constant 1|
fe = 9f/dy and fr) = df/dn
The normal and tangential derivatives in the transformed
plang are given by Thompson (1978). Normal velocities are
then:

V- Ly L (@_ a—“_’ ) (A1)
at, d§ vy \ax
by oy bty dy ]
v 20 oy A2
n" u’-? T o 2L oy e (A
giving:
v, - e v (A3)
Ly &
and

VoL, 36 19271938

giving:
v, - 2o v (A6)
L+ of
APPENDIX B

IMPLEMENTATION OF BOUNDARY CONDITIONS

Because there is little information available in the
literature on the finite-volume development of boundary
conditions in the transformed plane, the development is
demonstrated in this example. The condition on the fluid
energy equation at the left side wall was developed from
the finite-volume shown in figure Bl. Using the
relationships in Appendix A and in Thompson (1978), the
heat fluxes normal to each surface arc:

g = D, L
2 Iy

xi"r' [{Trjl,jru ’{Tr}nj] _ﬁ'[[TF]lj_{Tf :II-J] }

+h;rvﬁ;_[{Ti]1.|+{T;:';,H] {B1)
ke
= — e —
% I

a[(Teky =Ty, 5] 'g[”ﬂj.}u "[TE}I.jH:,

+mV;'—[ET;}l,,+iTrh,,} (B2)
LR
2 1] a3
* {"I [{Tf}l_j —(T; }I.j—l] _ﬁ[[TE)l.j _[Tf}l.j] }
+“-‘£_’E Vo LTy +(T ] (B3)
Q=& h, [T, ;~(To) ] (B4)
Flpure Bl-Energy balance at side wall of railcar,
1937



When these fluxes are summed with the source term and
set equal to energy storage, the result is:

Ly Jh? ATy )y
P(per) T

Jh?
‘I_hpA:..w[{Ta :Il.j -{TI‘}IJ] +q, -4, -4z ¥4, (B3)

Substituting equations B1 through B4 into equation BS and
cancelling terms yield:

a(T;)
ot

L _hm::,l-v[{r, )y =(T) ] +%{u[{ﬂ}”
=(T¢}yy) —g[ﬁ}l Likl _{Tf}l.]-ll +1 [(Te)
v
- E{Tr]u +(T¢) I.j-:l] ) _H;‘ [[Tr] 1,1 _{Tf]:.H ]

W
—Eﬁ[m), 5 HTe) o] (B6)

which, in dimensionless variables, becomes:

2O g, 001,00, ] B 0,-(00).,]

(9]
T

+4I:T12{1“[[E'r]z.1‘{Ei}!-i]“ﬁﬂgr}'*“’ O ]

+7[(8)15 . -2(0),,5+(8) . 1]}

_{HE]Lj-I ] =

Y

Aoy

L* v
——_"fa.}. .
H@ﬁr"{ [}1,j+l
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